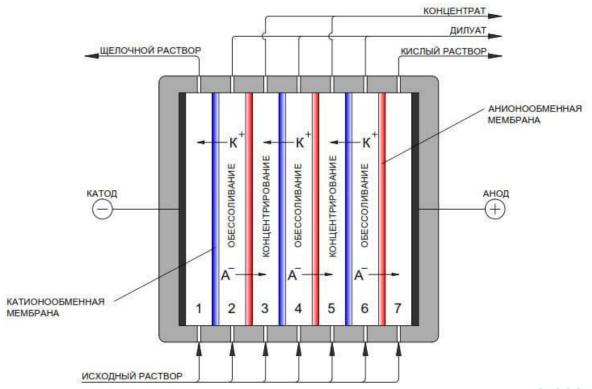


Технология реверсивного электродиализа для получения питьевой воды. Перспективы применения в Украине. Пилотные испытания в г. Мариуполь

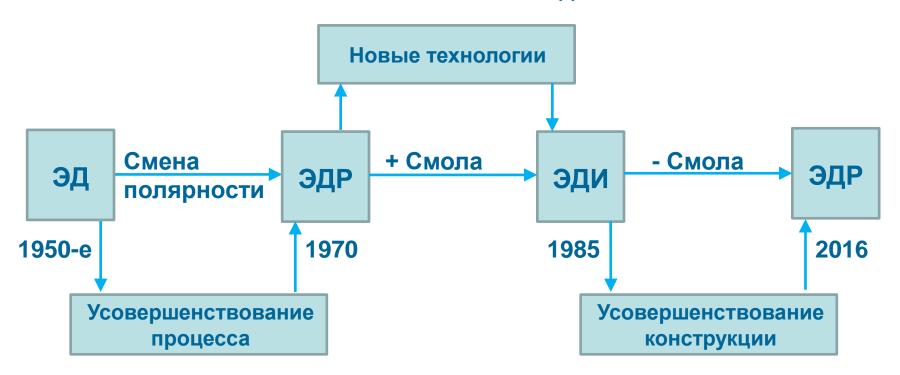


ПРИМЕНЕНИЕ ТЕХНОЛОГИЙ ОБЕССОЛИВАНИЯ В МИРЕ



ПРИНЦИПИАЛЬНАЯ СХЕМА ПРОЦЕССА ЭЛЕКТРОДИАЛИЗА

ВНЕШНИЙ ВИД МОДУЛЯ


ОБЗОР ТЕХНОЛОГИИ

Преимущества электродиализа:

- Низкое энергопотребление;
- Низкое рабочее давление;
- Отсутствие шума и вибраций при работе оборудования;
- Легкая настройка рабочих параметров;
- Получение воды с заданным солесодержанием;
- Постоянное качество подготовленной воды при колебаниях качества исходной воды;
- Отсутствие необходимости в применении спецматериалов для изготовления трубопроводов.

ИСТОРИЯ РАЗВИТИЯ ЭЛЕКТРОДИАЛИЗА

ПРИМЕНЕНИЕ УСТАНОВОК ЭДР В МИРЕ

Расположение	Страна		Применение	Производительность, м3/сут	год			
EURODIA								
Montefano	Италия	Грунтовые воды	Удаление нитратов	1000	1991			
Munchenbuschsee	Швейцария	Грунтовые воды	Удаление нитратов	1200	1996			
Kleylehof	Австрия	Грунтовые воды	Удаление нитратов	3500	1997			
GENERAL ELECTRIC WATER & PROCESS (fomerly ionics Inc)								
Abrera, BCN	Испания	Поверхностные воды	Снижение бромидов	200 000	2008			
Magna, Utah	США	Грунтовые воды	Снижение солесодержания	22 728	2008			
Sherman, Texas	США	Поверхностные воды	Снижение солесодержания	27 700	1993-96-98			
Suffolk, Virginia	США	Грунтовые воды	Удаление бромидов	56 000	1990			
Sarasota, Or	США	Грунтовые воды	Снижение жесткости и солесодержания	45 420	1995			
Maspalomas	Испания	Грунтовые воды	Снижение солесодержания	37 000	1986			
Barranco Seco, Canary Is.	Испания	Сточные воды	Повторное использование	26 000	2002			
Bermuda WaterWorks	Бермуды	Грунтовые воды	Снижение жесткости и нитратов	2300	1989			
Falconera, Valencia	Испания	Грунтовые воды	Снижение нитратов	16 000	2007			
			MEGA a.s.					
Sant Boi, BCN	Испания	Сточные воды	Снижение солесодержания	55 296	2010			
Dolni Rozinka	Чехия	Добыча урана	Обессоливание осадка	1 752	2007			
ZIAR nad HRONOM	Словакия	Сточные воды	Обессоливание осадка	350	2003			
Arak	Иран	Сточные воды	градирни	4 800	2008-10			
Alberta	Канада	Скважинная вода	Обессоливание	40	2008			

УСТАНОВКА ДЛЯ ОЧИСТКИ ПИТЬЕВОЙ ВОДЫ В МУНИЦИПАЛИТЕТЕ АБРЕРА, БАРСЕЛОНА, ИСПАНИЯ

Показатель	Значение	
Средняя производительность:	200 000 м³/сутки	
Электропроводность исходной воды:	900 – 3000 μS/cm	
Температура исходной воды	5 - 29°C	
Напряжение:	340-450 В 1-я стадия 320-390 В 2-я стадия	
Снижение солесодержания:	60-80%	
Потребление электроэнергии:	<0,6 кВт/м ³	

ПИЛОТНАЯ УСТАНОВКА СИНГАПУР

С 9 по 12 июля 2018 г. представители Мариупольского водоканала и мэрии посетили «Сингапурскую Международную неделю воды».

Представители были ознакомлены с передовыми технологиями водоочистки и водоподготовки.

Организаторами поездки делегации выступили компании:

- **ООО «ГидроТех Инжиниринг»**, Украина,
- «Pure Water Group», г. Шпрундель, Голландия
- «Evoqua», г. Питтсбург, США.

ПИЛОТНАЯ УСТАНОВКА СИНГАПУР

В рамках Международной недели воды в Сингапуре делегация посетила производственные мощности компании «Evoqua», где производятся уникальные современные комплектующие для систем подготовки воды питьевого качества.

ПИЛОТНАЯ УСТАНОВКА СИНГАПУР

Визит на муниципальный водоканал г. Сингапур. В настоящий момент имеется четыре источника водоснабжения:

- Природные источники (дождевая, скважинная вода);
- Речная вода из Малайзии по каналу;
- Океаническая вода (Индийский океан);
- Очистка и повторное использование сточных вод.

Основная технология очистки воды — обратный осмос. Работает 5 заводов по производству питьевой воды суммарной мощностью 1045500 м³/сут.

ПИЛОТНАЯ УСТАНОВКА СИНГАПУР

С 2008 года в Сингапуре на базе муниципалитета проводятся промышленные испытания установки по производству питьевой воды по технологии ЭДР. Испытания курируются и финансируются правительством Сингапура.

Исходная вода — Индийский океан. Солесодержание на входе — 35 000 мг/л Солесодержание на выходе — 450 мг/л 80/778/EEC - питьевая вода европейского стандарта.

ПИЛОТНАЯ УСТАНОВКА СИНГАПУР

Правительством Сингапура принята программа, рассчитанная до 2060 г. направленная на независимость от внешних поставщиков пресной воды..

Приоритетом выбрано внедрение новых энергоэффективных технологий с поэтапным замещением существующих мощностей.

ПИЛОТНАЯ УСТАНОВКА МАРИУПОЛЬ

Компания ООО «ГидроТех Инжиниринг», работает на рынке Украины с 1998 года, разрабатывает, поставляет и обслуживает системы различных технологий.

С 2003 года поставляет решения по очистке и подготовке воды в Мариупольском регионе.

С 2014 года занимается поиском и предлагает решения для подготовки питьевой воды г. Мариуполь.

ПИЛОТНАЯ УСТАНОВКА МАРИУПОЛЬ

С 2016 года **ООО** «ГидроТех Инжиниринг» совместно с голландской кампанией **PWG** и американским производителем **Evoqua** занимаются поиском оптимального по капитальным затратам и эксплуатационным расходам технического решения подготовки питьевой воды для города Мариуполь.

Все три компании имеют многолетний опыт работы во всех технологиях очистки воды.

ПИЛОТНАЯ УСТАНОВКА МАРИУПОЛЬ

Пилотная установка по технологии ЭДР г. Мариуполь

- Совместными усилиями группы компаний разработано решение подготовки воды питьевого качества из источников Старо-Крымское водохранилище для г. Мариуполь.
- Собрана пилотная установка 72 м³/сут. Для проведения испытаний непосредственно на производственных мощностях Мариупольского Горводоканала и Коммунального предприятия «Компания «Вода Донбасса».

ПИЛОТНАЯ УСТАНОВКА МАРИУПОЛЬ

Пилотная установка по технологии ЭДР г. Мариуполь

Цель испытаний:

- Подтверждение эффективности новых мировых технологических решений;
- Определение оптимальных технико-экономических показателей;
- Получение 72 м³/сут. питьевой воды европейского качества.

ПИЛОТНАЯ УСТАНОВКА МАРИУПОЛЬ

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ УСТАНОВКИ ЭЛЕКТРОДИАЛИЗА Г. МАРИУПОЛЬ

Показатель	Значение	
Солесодержание исходной воды:	3000 мг/л	
Солесодержание продукта:	<1000 мг/л	
Расчетное потребление электроэнергии:	0,62 кВт/м ³	
Процент извлечения питьевой воды:	85%	
Доля сточных вод:	15%	
Производительность	72 м³/сут	

ПИЛОТНАЯ УСТАНОВКА МАРИУПОЛЬ

СРАВНЕНИЕ ТЕХНИКО-ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ ТЕХНОЛОГИЙ ЭЛЕКТРОДИАЛИЗА (ЭДР) И ОБРАТНОГО ОСМОСА (ОО) ПРИ ПРОИЗВОДСТВЕ ПИТЬЕВОЙ ВОДЫ В Г. МАРИУПОЛЬ

Показатель	ЭДР	00
Затраты электроэнергии, кВт/м³	0,622	1,27
Себестоимость питьевой воды, евро/м ³	0,12	0,24
Количество сточных вод, м ³ /м ³	0,25	0,31
Рабочее давление, бар	1,7	15
Средний срок службы элементов, лет	10	3
Требуемая технология предочистки	Песочные фильтры	Ультрафильтрация
Коллоидный индекс	12	3
Свободный хлор, мг/л	0,5	-

L engineering

СПАСИБО ЗА ВНИМАНИЕ!

Просим направлять Ваши вопросы по электронному адресу:

office@hydrotech-engineering.com